Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- Greedy
- ReLU
- DeepLearning
- 그리디
- 실버쥐
- Blockchain
- Swift
- mysql
- Node.js
- Docker
- 플로이드와샬
- 캡스톤정리
- 부르트포스
- 프로그래머스
- NeuralNetwork
- 백준
- 문제풀이
- 탐색
- dp
- dfs
- 알고리즘
- BFS
- C++
- ios
- 백트래킹
- Algorithm
- Stack
- sigmoid
- 풀이
- 그래프
Archives
- Today
- Total
목록Activation function (1)
개발아 담하자
[Deep Learning] Training NeuralNetwork(1) : Activation Function
딥러닝 네트워크에서는 노드에 들어오는 값들에 대해 곧바로 다음 레이어로 전달하지 않고 비선형 함수를 통과시킨 후 전달한다. 이 때 사용하는 함수를 활성화 함수 (Activation Function) 이라 부른다. 선형함수인 h(x)=cx를 활성화함수로 사용한 3층 네트워크를 떠올려 보세요. 이를 식으로 나타내면 y(x)=h(h(h(x)))가 됩니다. 이는 실은 y(x)=ax와 똑같은 식입니다. a=c3이라고만 하면 끝이죠. 즉, 은닉층이 없는 네트워크로 표현할 수 있습니다. 뉴럴네트워크에서 층을 쌓는 혜택을 얻고 싶다면 활성화함수로는 반드시 비선형 함수를 사용해야 합니다. 딥러닝에서 사용되는 활성화 함수들에 대해서 자세히 알아보자. 1. sigmoid Function 시그모이드 함수는 선형인 multi ..
🚀 Deep Learning
2020. 5. 3. 16:28